Bag-of-Words Representation for Biomedical Time Series Classification
نویسندگان
چکیده
Automatic analysis of biomedical time series such as electroencephalogram (EEG) and electrocardiographic (ECG) signals has attracted great interest in the community of biomedical engineering due to its important applications in medicine. In this work, a simple yet effective bag-of-words representation that is able to capture both local and global structure similarity information is proposed for biomedical time series representation. In particular, similar to the bag-of-words model used in text document domain, the proposed method treats a time series as a text document and extracts local segments from the time series as words. The biomedical time series is then represented as a histogram of codewords, each entry of which is the count of a codeword appeared in the time series. Although the temporal order of the local segments is ignored, the bag-of-words representation is able to capture high-level structural information because both local and global structural information are well utilized. The performance of the bag-of-words model is validated on three datasets extracted from real EEG and ECG signals. The experimental results demonstrate that the proposed method is not only insensitive to parameters of the bag-of-words model such as local segment length and codebook size, but also robust to noise.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملEfficient Temporal Kernels Between Feature Sets for Time Series Classification
In the time-series classification context, the majority of the most accurate core methods are based on the Bag-of-Words framework, in which sets of local features are first extracted from time series. A dictionary of words is then learned and each time series is finally represented by a histogram of word occurrences. This representation induces a loss of information due to the quantization of f...
متن کاملBag-of-Temporal-SIFT-Words for Time Series Classification
Time series classification is an application of particular interest with the increase of data to monitor. Classical techniques for time series classification rely on point-to-point distances. Recently, Bag-ofWords approaches have been used in this context. Words are quantized versions of simple features extracted from sliding windows. The SIFT framework has proved efficient for image classifica...
متن کاملBiomedical literature classification using encyclopedic knowledge: a Wikipedia-based bag-of-concepts approach
Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that...
متن کاملFinding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation
For more than one decade, time series similarity search has been given a great deal of attention by data mining researchers. As a result, many time series representations and distance measures have been proposed. However, most existing work on time series similarity search focuses on finding shape-based similarity. While some of the existing approaches work well for short time series data, they...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomed. Signal Proc. and Control
دوره 8 شماره
صفحات -
تاریخ انتشار 2013